Novel isoforms of the sodium channels Nav1.8 and Nav1.5 are produced by a conserved mechanism in mouse and rat.

نویسندگان

  • Niall C H Kerr
  • Fiona E Holmes
  • David Wynick
چکیده

The voltage-gated sodium channel Na(v)1.8 is only expressed in subsets of neurons in dorsal root ganglia (DRG) and trigeminal and nodose ganglia. We have isolated mouse partial length Na(v)1.8 cDNA clones spanning the exon 17 sequence, which have 17 nucleotide substitutions and 12 predicted amino acid differences from the published sequence. The absence of a mutually exclusive alternative exon 17 was confirmed by sequencing 4.1 kilobases of genomic DNA spanning exons 16-18 of Scn10a. A novel cDNA isoform was identified, designated Na(v)1.8c, which results from alternative 3'-splice site selection at a CAG/CAG motif to exclude the codon for glutamine 1031 within the interdomain cytoplasmic loop IDII/III. The ratio of Na(v)1.8c (CAG-skipped) to Na(v)1.8 (CAG-inclusive) mRNA in mouse is approximately 2:1 in adult DRG, trigeminal ganglion, and neonatal DRG. A Na(v)1.8c isoform also occurs in rat DRG, but is less common. Of the two other tetrodotoxin-resistant channels, no analogous alternative splicing of mouse Na(v)1.9 was detected, whereas rare alternative splicing of Na(v)1.5 at a CAG/CAG motif resulted in the introduction of a CAG trinucleotide. This isoform, designated Na(v)1.5c, is conserved in rat and encodes an additional glutamine residue that disrupts a putative CK2 phosphorylation site. In summary, novel isoforms of Na(v)1.8 and Na(v)1.5 are each generated by alternative splicing at CAG/CAG motifs, which result in the absence or presence of predicted glutamine residues within the interdomain cytoplasmic loop IDII/III. Mutations of sodium channels within this cytoplasmic loop have previously been demonstrated to alter electrophysiological properties and cause cardiac arrhythmias and epilepsy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-gated sodium channels in the mammalian heart

Mammalian species express nine functional voltage-gated Na(+) channels. Three of them, the cardiac-specific isoform Nav1.5 and the neuronal isoforms Nav1.8 and Nav1.9, are relatively resistant to the neurotoxin tetrodotoxin (TTX; IC50 ≥ 1 μM). The other six isoforms are highly sensitive to TTX with IC50 values in the nanomolar range. These isoforms are expressed in the central nervous system (N...

متن کامل

Expression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus

Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...

متن کامل

Expression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus

Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...

متن کامل

Isoflurane inhibits the tetrodotoxin-resistant voltage-gated sodium channel Nav1.8.

BACKGROUND Voltage-gated sodium channels (Nav) mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant (TTX-r) compared to other isoforms. Nav1.8 is highly expressed in dorsal root ganglion neurons and is functionally linked to nociception, but the sensitivity of TTX-r isoforms to inhaled anesthetics is unclear. M...

متن کامل

Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic.

RATIONALE Although the sodium channel locus SCN10A has been implicated by genome-wide association studies as a modulator of cardiac electrophysiology, the role of its gene product Nav1.8 as a modulator of cardiac ion currents is unknown. OBJECTIVE We determined the electrophysiological and pharmacological properties of Nav1.8 in heterologous cell systems and assessed the antiarrhythmic effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 23  شماره 

صفحات  -

تاریخ انتشار 2004